Chapter 4 Organic Reactions Types and Mechanism

Classification of Organic reaction

There are so many types of organic reactions:

- > Addition Reactions
- Elimination Reactions
- Substitution Reactions

Rearrangement Reaction

We will also study:

Reaction Mechanisms

- ✓ Bond Dissociation
- ✓ Bond Formation

In this lecture, we're going to focus on these only

Let's start with Reaction Profile (Exothermic)

If we have the following reaction:

lose C + DB products. ✤ Before transition state ‡ $E_{\rm a}$ energy E_a A + Benergy ΔH° (reactants) C + D(products) reaction coordinate

In this reaction, the reactants have higher energy than products. So, they lose energy equal to ∆H to form products.
Before going to the products, reactants should transform to a transition state (an intermediate), thus it absorb some energy called activation energy E_{a.}

Some Definitions

 Reaction Mechanism: sequence of reaction steps that must occur to go from reactants to products.

Each step include dissociation of certain bond, or formation of new one.

- Thermodynamics: The study of the energy changes that occur in chemical transformations. It shows us the stability of reactants compared to products.
- **Kinetics**: The study of reaction rates:
 - determining which product is formed rapidly.
 - predicting the factors affecting the reaction rate.
- Transition state: unstable species that has short life time, and convert rapidly to the final product.

Bond Breaking and Formation Polar and Non Polar

Bond Breaking:

Bond Formation:

$A \cdot + \cdot B \longrightarrow A : B$	Homogenic bond making (radical) (one electron donated by each fragment)
$A^+ + : B^- \longrightarrow A : B$	Heterogenic bond making (polar) (two electrons donated by one fragment)

I- Addition Reactions

Addition reaction: two molecules combine to give one molecule.

- It Occurs in alkene & alkyne.
- The double or triple bond is easily broken (highly reactive).
- Reactants are added to the carbon atoms in these bonds.

Name of Addition Reaction
Hydrogenation
Halogenation
Hydrohalogenation
Hydration

Examples of Addition Reactions

II- Elimination Reactions

Elimination Reaction: removal of a molecule from two adjacent carbon atoms. Ex. Preparation of alkene or alkyne

III- Substitution Reactions

Substitution Reaction: a reaction in which an atom or a group of atoms is replaced by another atom or group of atoms.

- It occurs on σ bonds and at the same carbon atom: one σ bond breaks and another forms

In a general substitution, Y (nucleophile) replaces Z on a carbon atom. Its mechanism can be classified into: (SN¹) or (SN²) depending on timing of bond breaking and bond forming steps and the strength of Nu.

Nucleophile: a molecule or ion that donates a pair of electrons to another molecule or ion to form a new covalent bond.

 $\underline{S_N 2 \ Reaction}$: Bimolecular Nucleophilic Substitution Reaction It takes place in a single step without intermediate

S_N1 Reaction: Unimolecular Nucleophilic Substitution Reaction

It takes place in a three steps and involve formation of intermediate

Practice Exercises:

Classify the following reactions as substitution, elimination, or addition.

Types of reactions	Example
Addition: two molecules combine to give one molecule. Occurs in alkene & alkyne	$H_2C = CH_2 + H_2 \xrightarrow{Pt} H_2C - CH_2$
Substitution : one atom, ion or group is replaced (substituted) by another ($S_N 1$, $S_N 2$) Usually occurs in saturated compounds such as alkanes.	$CH_4 + CI_2 \xrightarrow{light} CH_3CI + HCI$
Elimination: removal of a molecule from two adjacent carbon atoms.	$CH_3-CH_2CI \xrightarrow{\text{strong base}} CH_2=CH_2 + HCI$
Oxidation – Reduction: Oxidation: gain of O, loss of H, or both Reduction: gain of H, loss of O, or both	$R-CH_3 \xrightarrow{\text{oxidation}} RCH_2OH \xrightarrow{\text{oxidation}} RCH_2OH$
Rearrangement: molecule undergoes changes to be converted to another isomer.	$\begin{array}{c} CH_{3}CH_{2} \\ C = C \\ H \\ H \\ 1-Butene \end{array} \xrightarrow{H_{3}C} H_{3}C \\ H \\ H \\ H \\ H \\ C = C \\ H \\ CH_{3} \\ 2-Butene \end{array}$